Restructured project for separate plugins

This commit is contained in:
Ebu
2025-12-04 09:34:55 +01:00
parent 3cf22b7189
commit 28f14ba713
29 changed files with 364 additions and 248 deletions

9
dsp/Cargo.toml Normal file
View File

@@ -0,0 +1,9 @@
[package]
name = "dsp"
version = "0.1.0"
edition = "2024"
[dependencies]
femtovg = "0.19.3"
image = { version = "0.25.9", default-features = false, features = ["png"] }
nih_plug = { git = "https://github.com/robbert-vdh/nih-plug", version = "0.0.0", default-features = false }

74
dsp/src/amplitude.rs Normal file
View File

@@ -0,0 +1,74 @@
use std::fmt::{Debug, Display};
use crate::{decibel::Decibel, math_ops_impl};
#[derive(Default, Copy, Clone, PartialEq, PartialOrd)]
pub struct Amplitude(pub f64);
impl From<Amplitude> for Decibel {
fn from(value: Amplitude) -> Self {
Decibel::from(20.0 * value.0.abs().log10())
}
}
impl Amplitude {
pub fn value(&self) -> f64 {
self.0
}
}
impl Display for Amplitude {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str(&format!("{:.2}", self.0))
}
}
impl Debug for Amplitude {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str(&format!("{}", self.0))
}
}
math_ops_impl!(Amplitude);
impl std::ops::Add for Amplitude {
type Output = Amplitude;
fn add(self, rhs: Amplitude) -> Self::Output {
Self(self.0 + rhs.0)
}
}
impl std::ops::Sub for Amplitude {
type Output = Amplitude;
fn sub(self, rhs: Amplitude) -> Self::Output {
Self(self.0 - rhs.0)
}
}
impl std::ops::Mul for Amplitude {
type Output = Amplitude;
fn mul(self, rhs: Amplitude) -> Self::Output {
Self(self.0 * rhs.0)
}
}
impl std::ops::Div for Amplitude {
type Output = Amplitude;
fn div(self, rhs: Amplitude) -> Self::Output {
Self(self.0 / rhs.0)
}
}
impl std::ops::AddAssign for Amplitude {
fn add_assign(&mut self, rhs: Amplitude) {
self.0 += rhs.0;
}
}
impl std::ops::SubAssign for Amplitude {
fn sub_assign(&mut self, rhs: Amplitude) {
self.0 -= rhs.0;
}
}
impl std::ops::MulAssign for Amplitude {
fn mul_assign(&mut self, rhs: Amplitude) {
self.0 *= rhs.0;
}
}
impl std::ops::DivAssign for Amplitude {
fn div_assign(&mut self, rhs: Amplitude) {
self.0 /= rhs.0;
}
}

348
dsp/src/biquad.rs Normal file
View File

@@ -0,0 +1,348 @@
use std::{
f64::{self, consts::SQRT_2},
fmt::Display,
sync::Arc,
};
use crate::{
decibel::Decibel, SampleRate,
traits::{IntFormatter, Processor},
};
#[derive(Default, Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Slope {
#[default]
DB12,
DB24,
DB36,
DB48,
}
#[derive(Default, Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum FilterMode {
Peak,
HighPass,
HighShelf,
LowPass,
LowShelf,
AllPass,
BandPass,
BandReject,
#[default]
None,
}
impl TryFrom<i32> for FilterMode {
type Error = ();
fn try_from(value: i32) -> Result<Self, Self::Error> {
match value {
0 => Ok(FilterMode::Peak),
1 => Ok(FilterMode::HighPass),
2 => Ok(FilterMode::HighShelf),
3 => Ok(FilterMode::LowPass),
4 => Ok(FilterMode::LowShelf),
5 => Ok(FilterMode::AllPass),
6 => Ok(FilterMode::BandPass),
7 => Ok(FilterMode::BandReject),
_ => Err(()),
}
}
}
impl From<FilterMode> for i32 {
fn from(value: FilterMode) -> Self {
match value {
FilterMode::Peak => 0,
FilterMode::HighPass => 1,
FilterMode::HighShelf => 2,
FilterMode::LowPass => 3,
FilterMode::LowShelf => 4,
FilterMode::AllPass => 5,
FilterMode::BandPass => 6,
FilterMode::BandReject => 7,
FilterMode::None => 8,
}
}
}
impl TryFrom<&str> for FilterMode {
type Error = ();
fn try_from(value: &str) -> Result<Self, Self::Error> {
match value {
"Peak" => Ok(FilterMode::Peak),
"Highpass" => Ok(FilterMode::HighPass),
"High Shelf" => Ok(FilterMode::HighShelf),
"Lowpass" => Ok(FilterMode::LowPass),
"Low Shelf" => Ok(FilterMode::LowShelf),
"Allpass" => Ok(FilterMode::AllPass),
"Bandpass" => Ok(FilterMode::BandPass),
"Notch" => Ok(FilterMode::BandReject),
_ => Err(()),
}
}
}
impl Display for FilterMode {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str(match self {
FilterMode::Peak => "Peak",
FilterMode::HighPass => "Highpass",
FilterMode::HighShelf => "High Shelf",
FilterMode::LowPass => "Lowpass",
FilterMode::LowShelf => "Low Shelf",
FilterMode::AllPass => "Allpass",
FilterMode::BandPass => "Bandpass",
FilterMode::BandReject => "Notch",
FilterMode::None => "None",
})
}
}
impl IntFormatter for FilterMode {
fn v2s() -> Arc<dyn Fn(i32) -> String + Send + Sync>
where
Self: Sized,
{
Arc::new(move |value| FilterMode::try_from(value).unwrap_or_default().to_string())
}
fn s2v() -> Arc<dyn Fn(&str) -> Option<i32> + Send + Sync>
where
Self: Sized,
{
Arc::new(move |value| FilterMode::try_from(value).map(i32::from).ok())
}
}
#[derive(Default, Debug, Clone, Copy)]
struct FilterCoefficients {
a1: f64,
a2: f64,
b0: f64,
b1: f64,
b2: f64,
}
impl FilterCoefficients {
fn calculate(
&mut self,
mode: FilterMode,
sample_rate: SampleRate,
freq: f64,
q: f64,
gain_db: Decibel,
) {
let v = 10f64.powf(gain_db.value().abs() / 20.0);
let k = (f64::consts::PI * freq / sample_rate.0).tan();
match mode {
FilterMode::Peak => {
if gain_db.value() >= 0.0 {
let norm = 1.0 / (1.0 + 1.0 / q * k + k * k);
self.b0 = (1.0 + v / q * k + k * k) * norm;
self.b1 = 2.0 * (k * k - 1.0) * norm;
self.b2 = (1.0 - v / q * k + k * k) * norm;
self.a1 = self.b1;
self.a2 = (1.0 - 1.0 / q * k + k * k) * norm;
} else {
let norm = 1.0 / (1.0 + v / q * k + k * k);
self.b0 = (1.0 + 1.0 / q * k + k * k) * norm;
self.b1 = 2.0 * (k * k - 1.0) * norm;
self.b2 = (1.0 - 1.0 / q * k + k * k) * norm;
self.a1 = self.b1;
self.a2 = (1.0 - v / q * k + k * k) * norm;
}
}
FilterMode::HighPass => {
let norm = 1.0 / (1.0 + k / q + k * k);
self.b0 = 1.0 * norm;
self.b1 = -2.0 * self.b0;
self.b2 = self.b0;
self.a1 = 2.0 * (k * k - 1.0) * norm;
self.a2 = (1.0 - k / q + k * k) * norm;
}
FilterMode::HighShelf => {
if gain_db.value() >= 0.0 {
let norm = 1.0 / (1.0 + SQRT_2 * k + k * k);
self.b0 = (v + (2.0 * v).sqrt() * k + k * k) * norm;
self.b1 = 2.0 * (k * k - v) * norm;
self.b2 = (v - (2.0 * v).sqrt() * k + k * k) * norm;
self.a1 = 2.0 * (k * k - 1.0) * norm;
self.a2 = (1.0 - SQRT_2 * k + k * k) * norm;
} else {
let norm = 1.0 / (v + (2.0 * v).sqrt() * k + k * k);
self.b0 = (1.0 + SQRT_2 * k + k * k) * norm;
self.b1 = 2.0 * (k * k - 1.0) * norm;
self.b2 = (1.0 - SQRT_2 * k + k * k) * norm;
self.a1 = 2.0 * (k * k - v) * norm;
self.a2 = (v - (2.0 * v).sqrt() * k + k * k) * norm;
}
}
FilterMode::LowPass => {
let norm = 1.0 / (1.0 + k / q + k * k);
self.b0 = k * k * norm;
self.b1 = 2.0 * self.b0;
self.b2 = self.b0;
self.a1 = 2.0 * (k * k - 1.0) * norm;
self.a2 = (1.0 - k / q + k * k) * norm;
}
FilterMode::LowShelf => {
if gain_db.value() >= 0.0 {
let norm = 1.0 / (1.0 + SQRT_2 * k + k * k);
self.b0 = (1.0 + (2.0 * v).sqrt() * k + v * k * k) * norm;
self.b1 = 2.0 * (v * k * k - 1.0) * norm;
self.b2 = (1.0 - (2.0 * v).sqrt() * k + v * k * k) * norm;
self.a1 = 2.0 * (k * k - 1.0) * norm;
self.a2 = (1.0 - SQRT_2 * k + k * k) * norm;
} else {
let norm = 1.0 / (1.0 + (2.0 * v).sqrt() * k + v * k * k);
self.b0 = (1.0 + SQRT_2 * k + k * k) * norm;
self.b1 = 2.0 * (k * k - 1.0) * norm;
self.b2 = (1.0 - SQRT_2 * k + k * k) * norm;
self.a1 = 2.0 * (v * k * k - 1.0) * norm;
self.a2 = (1.0 - (2.0 * v).sqrt() * k + v * k * k) * norm;
}
}
FilterMode::AllPass => {
let norm = 1.0 / (1.0 + k / q + k * k);
self.b0 = (1.0 - k / q + k * k) * norm;
self.b1 = 2.0 * (k * k - 1.0) * norm;
self.b2 = 1.0;
self.a1 = self.b1;
self.a2 = self.b0;
}
FilterMode::BandPass => {
let norm = 1.0 / (1.0 + k / q + k * k);
self.b0 = k / q * norm;
self.b1 = 0.0;
self.b2 = -self.b0;
self.a1 = 2.0 * (k * k - 1.0) * norm;
self.a2 = (1.0 - k / q + k * k) * norm;
}
FilterMode::BandReject => {
let norm = 1.0 / (1.0 + k / q + k * k);
self.b0 = (1.0 + k * k) * norm;
self.b1 = 2.0 * (k * k - 1.0) * norm;
self.b2 = self.b0;
self.a1 = self.b1;
self.a2 = (1.0 - k / q + k * k) * norm;
}
FilterMode::None => {}
}
}
}
#[derive(Debug, Default, Clone, Copy)]
struct State {
s1: f64,
s2: f64,
}
#[derive(Debug, Clone, Copy)]
pub struct BiquadFilterState {
pub mode: FilterMode,
pub cutoff: f64,
pub q: f64,
pub gain_db: Decibel,
pub slope: Slope,
}
impl Default for BiquadFilterState {
fn default() -> Self {
Self {
mode: FilterMode::None,
cutoff: 2000.0,
q: 0.707,
gain_db: Decibel::from(0.0),
slope: Slope::DB12,
}
}
}
#[derive(Debug, Clone)]
pub struct BiquadFilter {
pub state: BiquadFilterState,
sample_rate: SampleRate,
coefficients: FilterCoefficients,
slope_states: [State; 4],
dirty: bool,
}
impl BiquadFilter {
pub fn new(sample_rate: SampleRate) -> Self {
Self::from_state(sample_rate, BiquadFilterState::default())
}
pub fn from_state(sample_rate: SampleRate, state: BiquadFilterState) -> Self {
Self {
sample_rate,
coefficients: FilterCoefficients::default(),
slope_states: [State::default(); 4],
dirty: true,
state
}
}
pub fn set_mode(&mut self, mode: FilterMode) {
self.dirty = true;
self.state.mode = mode;
}
pub fn set_cutoff(&mut self, cutoff: f64) {
self.dirty = true;
self.state.cutoff = cutoff;
}
pub fn set_slope(&mut self, slope: Slope) {
self.dirty = true;
self.state.slope = slope;
}
pub fn set_q(&mut self, q: f64) {
self.dirty = true;
self.state.q = q;
}
pub fn set_gain<T>(&mut self, gain_db: T)
where
T: Into<Decibel>,
{
self.dirty = true;
self.state.gain_db = gain_db.into();
}
fn update_coefficients(&mut self) {
if !self.dirty {
return;
}
self.dirty = false;
self.coefficients.calculate(
self.state.mode,
self.sample_rate,
self.state.cutoff,
self.state.q,
self.state.gain_db,
);
}
}
impl Processor for BiquadFilter {
fn process(&mut self, sample: f64) -> f64 {
self.update_coefficients();
let iterations = match self.state.slope {
Slope::DB12 => 1,
Slope::DB24 => 2,
Slope::DB36 => 3,
Slope::DB48 => 4,
};
let mut current = sample;
for i in 0..iterations {
let result = self.coefficients.b0 * current + self.slope_states[i].s1;
let s1 = self.coefficients.b1 * current - self.coefficients.a1 * result
+ self.slope_states[i].s2;
let s2 = self.coefficients.b2 * current - self.coefficients.a2 * result;
self.slope_states[i].s1 = s1;
self.slope_states[i].s2 = s2;
current = result;
}
if current.is_nan() || current.is_infinite() {
0.0
} else {
current
}
}
}

127
dsp/src/comp.rs Normal file
View File

@@ -0,0 +1,127 @@
use crate::{
Ratio, SampleRate, amplitude::Amplitude, decibel::Decibel, ring_buffer::RingBuffer, rms, smoother::Smoother, traits::Processor
};
use std::time::Duration;
#[derive(Debug, Default, Clone, Copy)]
pub enum CompressorPeakMode {
#[default]
Sample,
RMS,
}
#[derive(Debug, Default, Clone, Copy)]
pub struct CompressorState {
pub peak_mode: CompressorPeakMode,
pub threshold: Decibel,
pub ratio: Ratio,
pub gain: Decibel,
pub attack: Duration,
pub release: Duration,
pub last_rms: f64,
pub input_db: Decibel,
pub output_static_db: Decibel,
pub gain_db: Decibel,
pub gain_smoothed_db: Decibel,
pub final_gain_db: Decibel,
}
impl CompressorState {
pub fn new() -> Self {
Self {
peak_mode: CompressorPeakMode::Sample,
threshold: Decibel::from(-24.0),
ratio: Ratio(1.0, 3.0),
gain: Decibel::from(0.0),
attack: Duration::from_millis(25),
release: Duration::from_millis(100),
last_rms: 0.0,
input_db: Decibel::from(0.0),
output_static_db: Decibel::from(0.0),
gain_db: Decibel::from(0.0),
gain_smoothed_db: Decibel::from(0.0),
final_gain_db: Decibel::from(0.0),
}
}
}
pub struct Compressor {
pub state: CompressorState,
sample_buffer: RingBuffer<f64, 2048>,
smoother: Smoother,
}
impl Compressor {
pub fn new(sample_rate: SampleRate) -> Self {
Self::from_state(sample_rate, CompressorState::default())
}
pub fn from_state(sample_rate: SampleRate, state: CompressorState) -> Self {
Self {
sample_buffer: RingBuffer::new(0.0),
smoother: Smoother::new(sample_rate),
state,
}
}
pub fn set_threshold<T>(&mut self, threshold: T)
where
T: Into<Decibel>,
{
self.state.threshold = threshold.into();
}
pub fn set_attack<T>(&mut self, attack: T)
where
T: Into<Duration>,
{
self.smoother.set_attack(attack);
}
pub fn set_release<T>(&mut self, release: T)
where
T: Into<Duration>,
{
self.smoother.set_release(release);
}
pub fn set_ratio<R>(&mut self, ratio: R)
where
R: Into<Ratio>,
{
self.state.ratio = ratio.into();
}
pub fn set_gain<T>(&mut self, gain: T)
where
T: Into<Decibel>,
{
self.state.gain = gain.into();
}
}
impl Processor for Compressor {
fn process(&mut self, sample: f64) -> f64 {
self.sample_buffer[0] = sample;
self.state.input_db = Decibel::from(Amplitude(match self.state.peak_mode {
CompressorPeakMode::Sample => sample.abs() + f64::EPSILON,
CompressorPeakMode::RMS => {
self.state.last_rms = rms(&self.sample_buffer, self.state.last_rms);
self.state.last_rms.abs().sqrt() + f64::EPSILON
}
}));
self.state.output_static_db = if self.state.input_db < self.state.threshold {
self.state.input_db
} else {
self.state.threshold
+ (self.state.input_db - self.state.threshold) * self.state.ratio.multiplier()
};
self.state.gain_db = self.state.output_static_db - self.state.input_db;
self.state.gain_smoothed_db = if self.state.gain_db < self.state.gain_smoothed_db {
self.smoother.attack(self.state.gain_db)
} else {
self.smoother.release(self.state.gain_db)
};
self.state.final_gain_db = self.state.gain_smoothed_db + self.state.gain;
self.sample_buffer.shift();
sample * self.state.final_gain_db
}
}

141
dsp/src/decibel.rs Normal file
View File

@@ -0,0 +1,141 @@
use std::fmt::{Debug, Display};
use crate::{amplitude::Amplitude, math_ops_impl};
#[derive(Default, Copy, Clone, PartialEq, PartialOrd)]
pub struct Decibel(f64);
impl Decibel {
pub fn value(&self) -> f64 {
self.0
}
}
impl From<Decibel> for Amplitude {
fn from(value: Decibel) -> Self {
Amplitude(10f64.powf(value.0 / 20.0))
}
}
impl Display for Decibel {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.0 >= 0.0 {
f.write_str(&format!("+{:.2}dB", self.0))
} else {
f.write_str(&format!("{:.2}dB", self.0))
}
}
}
impl Debug for Decibel {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.0 >= 0.0 {
f.write_str(&format!("+{}dB", self.0))
} else {
f.write_str(&format!("{}dB", self.0))
}
}
}
impl From<f32> for Decibel {
fn from(value: f32) -> Self {
Decibel(value as f64)
}
}
impl From<Decibel> for f32 {
fn from(value: Decibel) -> Self {
value.0 as f32
}
}
impl From<f64> for Decibel {
fn from(value: f64) -> Self {
let mut value = value;
#[cfg(debug_assertions)]
{
use nih_plug::nih_warn;
if value.is_nan() {
nih_warn!("Tried making dB from NaN");
value = 0.0;
} else if value.is_infinite() {
nih_warn!("Tried making dB from Inf");
value = 0.0;
} else if value >= 120.0 {
nih_warn!("Impossibly large dB {value}");
}
}
Decibel(value)
}
}
impl From<Decibel> for f64 {
fn from(value: Decibel) -> Self {
value.0
}
}
math_ops_impl!(Decibel);
impl std::ops::Add for Decibel {
type Output = Decibel;
fn add(self, rhs: Decibel) -> Self::Output {
Self(self.0 + rhs.0)
}
}
impl std::ops::Sub for Decibel {
type Output = Decibel;
fn sub(self, rhs: Decibel) -> Self::Output {
Self(self.0 - rhs.0)
}
}
impl std::ops::AddAssign for Decibel {
fn add_assign(&mut self, rhs: Decibel) {
self.0 += rhs.0;
}
}
impl std::ops::SubAssign for Decibel {
fn sub_assign(&mut self, rhs: Decibel) {
self.0 -= rhs.0;
}
}
impl std::ops::Mul<Decibel> for f32 {
type Output = f32;
fn mul(self, rhs: Decibel) -> Self::Output {
((self as f64) * rhs) as f32
}
}
impl std::ops::Mul<Decibel> for f64 {
type Output = f64;
fn mul(self, rhs: Decibel) -> Self::Output {
self * Amplitude::from(rhs).0
}
}
impl std::ops::Div<Decibel> for f32 {
type Output = f32;
fn div(self, rhs: Decibel) -> Self::Output {
((self as f64) / rhs) as f32
}
}
impl std::ops::Div<Decibel> for f64 {
type Output = f64;
fn div(self, rhs: Decibel) -> Self::Output {
self / Amplitude::from(rhs).0
}
}
impl std::ops::MulAssign<Decibel> for f32 {
fn mul_assign(&mut self, rhs: Decibel) {
*self = ((*self as f64) * rhs) as f32
}
}
impl std::ops::MulAssign<Decibel> for f64 {
fn mul_assign(&mut self, rhs: Decibel) {
*self *= Amplitude::from(rhs).0
}
}
impl std::ops::DivAssign<Decibel> for f32 {
fn div_assign(&mut self, rhs: Decibel) {
*self = ((*self as f64) / rhs) as f32
}
}
impl std::ops::DivAssign<Decibel> for f64 {
fn div_assign(&mut self, rhs: Decibel) {
*self /= Amplitude::from(rhs).0
}
}

31
dsp/src/eq.rs Normal file
View File

@@ -0,0 +1,31 @@
use crate::{BiquadFilter, Processor};
#[derive(Debug, Default, Clone)]
pub struct EqualizerState {
pub nodes: [Option<BiquadFilter>; 6],
}
pub struct Equalizer {
pub state: EqualizerState,
}
impl Equalizer {
pub fn new() -> Self {
Self::from_state(EqualizerState::default())
}
pub fn from_state(state: EqualizerState) -> Self {
Self { state }
}
}
impl Processor for Equalizer {
fn process(&mut self, sample: f64) -> f64 {
let mut sample = sample;
for node in &mut self.state.nodes {
if let Some(filter) = node {
sample = filter.process(sample);
}
}
sample
}
}

56
dsp/src/freq_split.rs Normal file
View File

@@ -0,0 +1,56 @@
use crate::{BiquadFilter, FilterMode, SampleRate, biquad::Slope, traits::Processor};
pub struct FreqSplitterState {
pub split_frequency: f64,
pub slope: Slope,
}
impl Default for FreqSplitterState {
fn default() -> Self {
Self {
split_frequency: 2000.0,
slope: Slope::DB24,
}
}
}
pub struct FreqSplitter {
pub state: FreqSplitterState,
low_band: BiquadFilter,
high_band: BiquadFilter,
}
impl FreqSplitter {
pub fn new(sample_rate: SampleRate) -> Self {
Self::from_state(sample_rate, FreqSplitterState::default())
}
pub fn from_state(sample_rate: SampleRate, state: FreqSplitterState) -> Self {
let mut this = Self {
state,
low_band: BiquadFilter::new(sample_rate),
high_band: BiquadFilter::new(sample_rate),
};
this.low_band.set_mode(FilterMode::LowPass);
this.high_band.set_mode(FilterMode::HighPass);
this
}
}
impl Processor<f64, (f64, f64)> for FreqSplitter {
fn process(&mut self, sample: f64) -> (f64, f64) {
self.low_band.set_cutoff(self.state.split_frequency);
self.low_band.set_slope(self.state.slope);
self.high_band.set_cutoff(self.state.split_frequency);
self.high_band.set_slope(self.state.slope);
(
self.low_band.process(sample),
self.high_band.process(sample),
)
}
}
impl Processor<f32, (f32, f32)> for FreqSplitter {
fn process(&mut self, sample: f32) -> (f32, f32) {
let (low, high) = self.process(sample as f64);
(low as f32, high as f32)
}
}

186
dsp/src/gui/mod.rs Normal file
View File

@@ -0,0 +1,186 @@
use std::sync::{Arc, atomic::Ordering};
use femtovg::{Canvas, ImageFlags, ImageId, Paint, Path, renderer::OpenGl};
use nih_plug::prelude::AtomicF32;
use crate::{Rect, ScaledRect};
pub struct SpriteSheet {
scale_factor: Arc<AtomicF32>,
image: Result<ImageId, String>,
width: usize,
height: usize,
frame_width: usize,
frame_height: usize,
frames_x: usize,
}
impl SpriteSheet {
pub fn empty() -> Self {
Self {
scale_factor: Arc::new(AtomicF32::new(1.0)),
image: Err("No image loaded".to_owned()),
width: 0,
height: 0,
frame_width: 0,
frame_height: 0,
frames_x: 0,
}
}
pub fn new(
canvas: &mut Canvas<OpenGl>,
data: &[u8],
scale_factor: Arc<AtomicF32>,
frame_width: usize,
frame_height: usize,
) -> Self {
let image = canvas
.load_image_mem(data, ImageFlags::empty())
.map_err(|e| format!("{e:?}"));
if let Ok(image) = image {
let (width, height) = canvas.image_size(image).unwrap_or_default();
Self {
scale_factor,
image: Ok(image),
width,
height,
frame_width,
frame_height,
frames_x: width / frame_width,
}
} else {
Self {
scale_factor,
image,
width: 0,
height: 0,
frame_width,
frame_height,
frames_x: 0,
}
}
}
pub fn draw(&self, canvas: &mut Canvas<OpenGl>, x: f32, y: f32, frame: usize) {
let factor = self.scale_factor.load(Ordering::Relaxed);
let frame_x = frame % self.frames_x;
let frame_y = frame / self.frames_x;
let screen_rect = Rect {
x: x * factor,
y: y * factor,
width: self.frame_width as f32 * factor,
height: self.frame_height as f32 * factor,
};
let image_rect = Rect {
x: screen_rect.x - (frame_x * self.frame_width) as f32 * factor,
y: screen_rect.y - (frame_y * self.frame_height) as f32 * factor,
width: self.width as f32 * factor,
height: self.height as f32 * factor,
};
let mut screen_path = Path::new();
screen_path.rect(
screen_rect.x,
screen_rect.y,
screen_rect.width,
screen_rect.height,
);
if let Ok(image) = self.image {
canvas.fill_path(
&screen_path,
&Paint::image(
image,
image_rect.x,
image_rect.y,
image_rect.width,
image_rect.height,
0.0,
1.0,
),
);
}
}
pub fn screen_bounds(&self, x: f32, y: f32) -> ScaledRect {
ScaledRect::new_from(
self.scale_factor.clone(),
(x, y, self.frame_width as f32, self.frame_height as f32),
)
}
}
pub struct Sprite {
scale_factor: Arc<AtomicF32>,
image: Result<ImageId, String>,
width: usize,
height: usize,
}
impl Sprite {
pub fn empty() -> Self {
Self {
scale_factor: Arc::new(AtomicF32::new(1.0)),
image: Err("No image loaded".to_owned()),
width: 0,
height: 0,
}
}
pub fn new(canvas: &mut Canvas<OpenGl>, data: &[u8], scale_factor: Arc<AtomicF32>) -> Self {
let image = canvas
.load_image_mem(data, ImageFlags::empty())
.map_err(|e| format!("{e:?}"));
if let Ok(image) = image {
let (width, height) = canvas.image_size(image).unwrap_or_default();
Self {
scale_factor,
image: Ok(image),
width,
height,
}
} else {
Self {
scale_factor,
image,
width: 0,
height: 0,
}
}
}
pub fn draw(&self, canvas: &mut Canvas<OpenGl>, x: f32, y: f32, alpha: f32) {
let factor = self.scale_factor.load(Ordering::Relaxed);
let screen_rect = Rect {
x: x * factor,
y: y * factor,
width: self.width as f32 * factor,
height: self.height as f32 * factor,
};
let mut screen_path = Path::new();
screen_path.rect(
screen_rect.x,
screen_rect.y,
screen_rect.width,
screen_rect.height,
);
if let Ok(image) = self.image {
canvas.fill_path(
&screen_path,
&Paint::image(
image,
screen_rect.x,
screen_rect.y,
screen_rect.width,
screen_rect.height,
0.0,
alpha,
),
);
}
}
pub fn screen_bounds(&self, x: f32, y: f32) -> ScaledRect {
ScaledRect::new_from(
self.scale_factor.clone(),
(x, y, self.width as f32, self.height as f32),
)
}
}

316
dsp/src/lib.rs Normal file
View File

@@ -0,0 +1,316 @@
mod amplitude;
mod biquad;
mod comp;
mod decibel;
mod eq;
mod freq_split;
mod gui;
mod meter;
mod ring_buffer;
mod smoother;
mod traits;
use std::{
fmt::Debug,
sync::{Arc, atomic::Ordering},
time::Duration,
};
pub use amplitude::Amplitude;
pub use biquad::{BiquadFilter, BiquadFilterState, FilterMode, Slope};
pub use comp::{Compressor, CompressorState};
pub use decibel::Decibel;
pub use eq::{Equalizer, EqualizerState};
pub use freq_split::{FreqSplitter, FreqSplitterState};
pub use gui::{SpriteSheet, Sprite};
use nih_plug::prelude::AtomicF32;
pub use traits::{FloatFormatter, IntFormatter, Lerp, Processor};
#[derive(Copy, Clone, Debug, Default, PartialEq)]
pub struct Point {
x: f32,
y: f32,
}
impl Point {
pub const fn new(x: f32, y: f32) -> Self {
Self { x, y }
}
}
impl From<(f32, f32)> for Point {
fn from(value: (f32, f32)) -> Self {
Point {
x: value.0,
y: value.1,
}
}
}
#[derive(Clone, Debug, Default)]
pub struct ScaledPoint {
pub factor: Arc<AtomicF32>,
pub x: f32,
pub y: f32,
}
impl PartialEq for ScaledPoint {
fn eq(&self, other: &Self) -> bool {
self.factor.load(Ordering::Acquire) == other.factor.load(Ordering::Acquire)
&& self.x == other.x
&& self.y == other.y
}
}
impl ScaledPoint {
pub fn new(factor: Arc<AtomicF32>) -> Self {
Self {
factor,
..Default::default()
}
}
pub fn new_from<P>(factor: Arc<AtomicF32>, point: P) -> Self
where
P: Into<Point>,
{
let point = point.into();
Self {
factor,
x: point.x,
y: point.y,
}
}
pub fn set<P>(&mut self, point: P)
where
P: Into<Point>,
{
let point = point.into();
self.x = point.x;
self.y = point.y;
}
pub fn set_scaled<P>(&mut self, point: P)
where
P: Into<Point>,
{
let factor = self.factor.load(Ordering::Acquire);
let point = point.into();
self.x = point.x / factor;
self.y = point.y / factor;
}
pub fn as_point(&self) -> Point {
let factor = self.factor.load(Ordering::Acquire);
Point {
x: self.x * factor,
y: self.y * factor,
}
}
}
#[derive(Copy, Clone, Debug, Default, PartialEq)]
pub struct Rect {
pub x: f32,
pub y: f32,
pub width: f32,
pub height: f32,
}
impl Rect {
pub fn contains<P>(&self, value: P) -> bool
where
P: Into<Point>,
{
let value = value.into();
value.x >= self.x
&& value.y >= self.y
&& value.x < self.x + self.width
&& value.y < self.y + self.height
}
}
impl From<(f32, f32, f32, f32)> for Rect {
fn from(value: (f32, f32, f32, f32)) -> Self {
Rect {
x: value.0,
y: value.1,
width: value.2,
height: value.3,
}
}
}
#[derive(Clone, Debug, Default)]
pub struct ScaledRect {
pub factor: Arc<AtomicF32>,
pub x: f32,
pub y: f32,
pub width: f32,
pub height: f32,
}
impl PartialEq for ScaledRect {
fn eq(&self, other: &Self) -> bool {
self.factor.load(Ordering::Acquire) == other.factor.load(Ordering::Acquire)
&& self.x == other.x
&& self.y == other.y
&& self.width == other.width
&& self.height == other.height
}
}
impl ScaledRect {
pub fn new(factor: Arc<AtomicF32>) -> Self {
Self {
factor,
..Default::default()
}
}
pub fn new_from<R>(factor: Arc<AtomicF32>, rect: R) -> Self
where
R: Into<Rect>,
{
let rect = rect.into();
Self {
factor,
x: rect.x,
y: rect.y,
width: rect.width,
height: rect.height,
}
}
pub fn as_rect(&self) -> Rect {
let factor = self.factor.load(Ordering::Acquire);
Rect {
x: self.x * factor,
y: self.y * factor,
width: self.width * factor,
height: self.height * factor,
}
}
}
use crate::ring_buffer::RingBuffer;
use std::fmt::Display;
#[macro_export]
macro_rules! math_ops_impl {
($T:ty) => {
/* impls for f32 */
impl std::ops::Add<f32> for $T {
type Output = $T;
fn add(self, rhs: f32) -> Self::Output {
Self(self.0 + rhs as f64)
}
}
impl std::ops::Sub<f32> for $T {
type Output = $T;
fn sub(self, rhs: f32) -> Self::Output {
Self(self.0 - rhs as f64)
}
}
impl std::ops::Mul<f32> for $T {
type Output = $T;
fn mul(self, rhs: f32) -> Self::Output {
Self(self.0 * rhs as f64)
}
}
impl std::ops::Div<f32> for $T {
type Output = $T;
fn div(self, rhs: f32) -> Self::Output {
Self(self.0 / rhs as f64)
}
}
impl std::ops::AddAssign<f32> for $T {
fn add_assign(&mut self, rhs: f32) {
self.0 += rhs as f64;
}
}
impl std::ops::SubAssign<f32> for $T {
fn sub_assign(&mut self, rhs: f32) {
self.0 -= rhs as f64;
}
}
impl std::ops::MulAssign<f32> for $T {
fn mul_assign(&mut self, rhs: f32) {
self.0 *= rhs as f64;
}
}
impl std::ops::DivAssign<f32> for $T {
fn div_assign(&mut self, rhs: f32) {
self.0 /= rhs as f64;
}
}
/* impls for f64 */
impl std::ops::Add<f64> for $T {
type Output = $T;
fn add(self, rhs: f64) -> Self::Output {
Self(self.0 + rhs)
}
}
impl std::ops::Sub<f64> for $T {
type Output = $T;
fn sub(self, rhs: f64) -> Self::Output {
Self(self.0 - rhs)
}
}
impl std::ops::Mul<f64> for $T {
type Output = $T;
fn mul(self, rhs: f64) -> Self::Output {
Self(self.0 * rhs)
}
}
impl std::ops::Div<f64> for $T {
type Output = $T;
fn div(self, rhs: f64) -> Self::Output {
Self(self.0 / rhs)
}
}
impl std::ops::AddAssign<f64> for $T {
fn add_assign(&mut self, rhs: f64) {
self.0 += rhs;
}
}
impl std::ops::SubAssign<f64> for $T {
fn sub_assign(&mut self, rhs: f64) {
self.0 -= rhs;
}
}
impl std::ops::MulAssign<f64> for $T {
fn mul_assign(&mut self, rhs: f64) {
self.0 *= rhs;
}
}
impl std::ops::DivAssign<f64> for $T {
fn div_assign(&mut self, rhs: f64) {
self.0 /= rhs;
}
}
};
}
#[derive(Default, Debug, Copy, Clone, PartialEq, PartialOrd)]
pub struct SampleRate(pub f64);
impl SampleRate {
pub fn as_samples<D>(&self, time: D) -> f64
where
D: Into<Duration>,
{
self.0 * time.into().as_secs_f64()
}
}
#[derive(Default, Copy, Clone, PartialEq, PartialOrd)]
pub struct Ratio(pub f64, pub f64);
impl Ratio {
pub fn multiplier(&self) -> f64 {
self.0 / self.1
}
}
impl Display for Ratio {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str(&format!("{}:{} ({})", self.0, self.1, self.multiplier()))
}
}
impl Debug for Ratio {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str(&format!("{}:{} ({})", self.0, self.1, self.multiplier()))
}
}
pub fn rms<const N: usize>(sample_buffer: &RingBuffer<f64, N>, last_rms: f64) -> f64 {
// RMS_0 = sqrt((1/n) * (x0^2 + x1^2 + x2^2 + ... + xN^2))
// RMS_-1 = sqrt((1/n) * ( x1^2 + x2^2 + ... + xN^2 + x(N+1)^2))
last_rms.powf(2.0)
+ (1.0 / N as f64) * (sample_buffer[0].powf(2.0) - sample_buffer[N - 1].powf(2.0))
}

0
dsp/src/meter.rs Normal file
View File

38
dsp/src/ring_buffer.rs Normal file
View File

@@ -0,0 +1,38 @@
use std::ops::{Index, IndexMut};
pub struct RingBuffer<T, const N: usize> {
buffer: [T; N],
index: usize,
}
impl<T, const N: usize> RingBuffer<T, N>
where
T: Copy,
{
pub const fn new(value: T) -> Self {
Self {
buffer: [value; N],
index: 0,
}
}
pub const fn len(&self) -> usize {
N
}
pub fn shift(&mut self) {
self.index = (self.index + 1) % N;
}
}
impl<T, const N: usize> Index<usize> for RingBuffer<T, N> {
type Output = T;
fn index(&self, index: usize) -> &Self::Output {
&self.buffer[(self.index + index) % N]
}
}
impl<T, const N: usize> IndexMut<usize> for RingBuffer<T, N> {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
&mut self.buffer[(self.index + index) % N]
}
}

50
dsp/src/smoother.rs Normal file
View File

@@ -0,0 +1,50 @@
use std::time::Duration;
use crate::SampleRate;
pub struct Smoother {
sample_rate: SampleRate,
attack: Duration,
release: Duration,
last_value: f64,
}
impl Smoother {
pub const fn new(sample_rate: SampleRate) -> Self {
Self {
sample_rate,
attack: Duration::ZERO,
release: Duration::ZERO,
last_value: 0.0,
}
}
pub fn set_attack<D>(&mut self, duration: D)
where
D: Into<Duration>,
{
self.attack = duration.into();
}
pub fn attack<T>(&mut self, value: T) -> T
where
T: From<f64>,
T: Into<f64>,
{
let a = (-2.2 / (self.attack.as_secs_f64() * self.sample_rate.0) + f64::EPSILON).exp();
self.last_value = a * self.last_value + (1.0 - a) * value.into();
(self.last_value + f64::EPSILON).into()
}
pub fn set_release<D>(&mut self, duration: D)
where
D: Into<Duration>,
{
self.release = duration.into();
}
pub fn release<T>(&mut self, value: T) -> T
where
T: From<f64>,
T: Into<f64>,
{
let a = (-2.2 / (self.release.as_secs_f64() * self.sample_rate.0) + f64::EPSILON).exp();
self.last_value = a * self.last_value + (1.0 - a) * value.into();
(self.last_value + f64::EPSILON).into()
}
}

68
dsp/src/traits.rs Normal file
View File

@@ -0,0 +1,68 @@
use std::{
ops::{Add, Mul},
sync::Arc,
};
pub trait FloatFormatter {
fn v2s(digits: usize) -> Arc<dyn Fn(f32) -> String + Send + Sync>
where
Self: Sized;
fn s2v() -> Arc<dyn Fn(&str) -> Option<f32> + Send + Sync>
where
Self: Sized;
}
pub trait IntFormatter {
fn v2s() -> Arc<dyn Fn(i32) -> String + Send + Sync>
where
Self: Sized;
fn s2v() -> Arc<dyn Fn(&str) -> Option<i32> + Send + Sync>
where
Self: Sized;
}
pub trait Processor<I = f64, O = f64> {
fn process(&mut self, sample: I) -> O;
}
impl<I> Processor<f32, f32> for I
where
I: Processor<f64, f64>,
{
fn process(&mut self, sample: f32) -> f32 {
self.process(sample as f64) as f32
}
}
pub trait Lerp<F> {
type Output;
fn lerp(&self, to: Self, t: F) -> Self::Output;
fn lerp_unbounded(&self, to: Self, t: F) -> Self::Output;
}
impl<T> Lerp<f64> for T
where
T: Mul<f64, Output = T>,
<T as Mul<f64>>::Output: Add,
Self: Copy,
{
type Output = <T as Add<Self>>::Output;
fn lerp(&self, to: Self, t: f64) -> Self::Output {
self.lerp_unbounded(to, t.clamp(0.0, 1.0))
}
fn lerp_unbounded(&self, to: Self, t: f64) -> Self::Output {
*self * (1.0 - t) + to * t
}
}
impl<T> Lerp<f32> for T
where
T: Mul<f32, Output = T>,
<T as Mul<f32>>::Output: Add,
Self: Copy,
{
type Output = <T as Add<Self>>::Output;
fn lerp(&self, to: Self, t: f32) -> Self::Output {
self.lerp_unbounded(to, t.clamp(0.0, 1.0))
}
fn lerp_unbounded(&self, to: Self, t: f32) -> Self::Output {
*self * (1.0 - t) + to * t
}
}